Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 14(1): 234, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667335

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease characterized by pulmonary fibrosis and lung dysfunction, ultimately leading to respiratory failure. Many preclinical studies have investigated the therapeutic potential of stem cell-derived exosomes in this disease, particularly mesenchymal stem cell-derived exosomes. However, the effects of embryonic stem cell-derived exosomes in IPF remain unclear. METHODS: We established a bleomycin (BLM)-induced pulmonary fibrosis mice model and administered human embryonic stem cell exosomes (hESC-exo) from the first day after BLM treatment. The effects of hESC-exo were assessed by pulmonary function tests, biochemical analysis, histochemistry, quantitative real-time polymerase chain reaction (qPCR), and western blot (WB). RNA-seq was used to screen for the potential therapeutic targets of hESC-exo in fibrotic lungs; the identified signaling axis was characterized using a luciferase assay, qPCR, and WB. RESULTS: Results indicated hESC-exo administration notably alleviated inflammation, removed deposited collagen, and rescued alveolar architecture in the lungs of BLM-induced mice. In vivo and in vitro tests revealed that hESC-exo-derived miR-17-5p directly bound thrombospondin-2 (Thbs2) to regulate inflammation and fibrosis; thus, hESC-exo protected against BLM toxicity in the lungs via the miR-17-5p/Thbs2 axis. CONCLUSION: These results suggest a promising new treatment for fibrosis-associated diseases.


Asunto(s)
Células Madre Embrionarias Humanas , Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , Animales , Ratones , Trombospondinas , MicroARNs/genética , Inflamación , Bleomicina/toxicidad
2.
Ann Transl Med ; 10(20): 1092, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36388801

RESUMEN

Background: Aging is a natural and multi-factorial phenomenon associated with multiple human pathologies. Mesenchymal stem cells (MSCs) hold great promise in clinical fields of medicine including tissue repair, cardiovascular disease, and brain ischemic injury. The purpose of this study was to explore the roles of MSCs in improving the condition of aging cells, repairing aging tissues and organs, and extending the life span of elderly mice. Methods: This study was carried out both in vitro and in vivo. We used MSCs to intervene with IMR-90 senescent cells induced by D-galactose and aged C57BL/6 mice. Results: After 48 hours of co-culturing the aged cells with MSCs, the up-regulated expression of inflammatory factor, interleukin 6 (IL6), and the down-regulated expression of several growth factors, such as transforming growth factor (TGFß1) and growth differentiation factor (GDF11), in D-galactose induced senescent cells were reversed. Moreover, compared with aged cells, the number of mitochondria and the telomere length were increased with MSC treatment. Similarly, in aged mice, the symptoms related to aging were improved after MSC treatment: the mouse hair became shiny and dense, and the symptoms of bladder overactivity were relieved. Hematoxylin and eosin (H&E) and Masson's trichrome staining showed that the histopathological changes in skin, bladder, liver, and lung were apparently improved. Conclusions: Treatment with MSCs effectively improves aging-related phenotypes and plays a beneficial role in improving aging and aging-related diseases.

3.
Stem Cell Res Ther ; 13(1): 449, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064647

RESUMEN

BACKGROUND: Increasing studies have reported the therapeutic effect of mesenchymal stem cell (MSC)-derived exosomes by which protein and miRNA are clearly characterized. However, the proteomics and miRNA profiles of exosomes derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) remain unclear. METHODS: In this study, we isolated exosomes from hESCs, hiPSCs, and human umbilical cord mesenchymal stem cells (hUC-MSCs) via classic ultracentrifugation and a 0.22-µm filter, followed by the conservative identification. Tandem mass tag labeling and label-free relative peptide quantification together defined their proteomics. High-throughput sequencing was performed to determine miRNA profiles. Then, we conducted a bioinformatics analysis to identify the dominant biological processes and pathways modulated by exosome cargos. Finally, the western blot and RT-qPCR were performed to detect the actual loads of proteins and miRNAs in three types of exosomes. RESULTS: Based on our study, the cargos from three types of exosomes contribute to sophisticated biological processes. In comparison, hESC exosomes (hESC-Exos) were superior in regulating development, metabolism, and anti-aging, and hiPSC exosomes (hiPSC-Exos) had similar biological functions as hESC-Exos, whereas hUC-MSCs exosomes (hUC-MSC-Exos) contributed more to immune regulation. CONCLUSIONS: The data presented in our study help define the protein and miRNA landscapes of three exosomes, predict their biological functions via systematic and comprehensive network analysis at the system level, and reveal their respective potential applications in different fields so as to optimize exosome selection in preclinical and clinical trials.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , MicroARNs , Exosomas/genética , Exosomas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteómica , Cordón Umbilical
4.
Cell Death Dis ; 13(2): 120, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136022

RESUMEN

The mammalian heart is capable of achieving perfect regeneration following cardiac injury through sustained cardiomyocyte proliferation during the early period after birth. However, this regenerative capacity is lost by postnatal day 7 and throughout adulthood. CUGBP1 is critical for normal cardiac development but its role in heart regeneration remains unclear. Cardiac CUGBP1 levels are high in the early postnatal period and soon downregulate to adult levels within 1 week following birth in mice. The simultaneously diminished regenerative capacity and CUGBP1 levels by postnatal day lead us to hypothesize that CUGBP1 may be beneficial in heart regeneration. In this study, the function of CUGBP1 in heart regeneration was tested by a heart apex resection mouse model. We demonstrate that cardiac inactivation of CUGBP1 impairs neonatal heart regeneration at P1, in turn, replenishment of CUGBP1 levels prolong regenerative potential at P8 and P14. Furthermore, our results imply that the Wnt/ß-catenin signaling and GATA4 involve in the CUGBP1 modulated neonatal heart regeneration. Altogether, our findings support CUGBP1 as a key factor promoting post-injury heart regeneration and provide a potential therapeutic method for heart disease.


Asunto(s)
Lesiones Cardíacas , Miocitos Cardíacos , Animales , Animales Recién Nacidos , Proliferación Celular , Corazón/fisiología , Lesiones Cardíacas/genética , Mamíferos , Ratones , Miocitos Cardíacos/fisiología
5.
Cell Prolif ; 55(3): e13179, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35088919

RESUMEN

OBJECTIVES: Endocardial cushions are precursors of the valve septum complex that separates the four heart chambers. Several genes have been implicated in the development of endocardial cushions. Specifically, ERp44 has been found to play a role in the early secretory pathway, but its function in heart development has not been well studied. MATERIALS AND METHODS: In this study, we established conditional and tissue-specific knockout mouse models. The morphology, survival rate, the development of heart and endocardial cushion were under evaluation. The relationship between ERp44 and VEGFA was investigated by transcriptome, qPCR, WB, immunofluorescence and immunohistochemistry. RESULTS: ERp44 knockout (KO) mice were smaller in size, and most mice died during early postnatal life. KO hearts exhibited the typical phenotypes of congenital heart diseases, such as abnormal heart shapes and severe septal and valvular defects. Similar phenotypes were found in cTNT-Cre+/- ; ERp44fl / fl mice, which indicated that myocardial ERp44 principally controls endocardial cushion formation. Further studies demonstrated that the deletion of ERp44 significantly decreased the proliferation of cushion cells and impaired the endocardial-mesenchymal transition (EndMT), which was followed by endocardial cushion dysplasia. Finally, we found that ERp44 was directly bound to VEGFA and controlled its release, further regulating EndMT. CONCLUSION: We demonstrated that ERp44 plays a specific role in heart development. ERp44 contributes to the development of the endocardial cushion by affecting VEGFA-mediated EndMT.


Asunto(s)
Cojinetes Endocárdicos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Miocardio/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Cardiopatías Congénitas/genética , Proteínas de la Membrana/metabolismo , Mesodermo/metabolismo , Ratones Noqueados , Chaperonas Moleculares/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
6.
Stem Cell Res Ther ; 12(1): 602, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895322

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has become a global epidemic disease. Its incidence is associated with type 2 diabetes mellitus (T2DM). Presently, there is no approved pharmacological agents specially developed for NAFLD. One promising disease-modifying strategy is the transplantation of stem cells to promote metabolic regulation and repair of injury. METHOD: In this study, a T2DM model was established through 28-week high-fat diet (HFD) feeding resulting in T2DM-associated NAFLD, followed by the injection of bone marrow mesenchymal stem cells (BMSCs). The morphology, function, and transfer of hepatocyte mitochondria were evaluated in both vivo and in vitro. RESULTS: BMSC implantation resulted in the considerable recovery of increasing weight, HFD-induced steatosis, liver function, and disordered glucose and lipid metabolism. The treatment with BMSC transplantation was accompanied by reduced fat accumulation. Moreover, mitochondrial transfer was observed in both vivo and vitro studies. And the mitochondria-recipient steatotic cells exhibited significantly enhanced OXPHOS activity, ATP production, and mitochondrial membrane potential, and reduced reactive oxygen species levels, which were not achieved by the blocking of mitochondrial transfer. CONCLUSION: Mitochondrial transfer from BMSCs is a feasible process to combat NAFLD via rescuing dysfunction mitochondria, and has a promising therapeutic effect on metabolism-related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Mesenquimatosas , Enfermedad del Hígado Graso no Alcohólico , Animales , Médula Ósea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Dieta Alta en Grasa , Hígado/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo
7.
CRISPR J ; 4(3): 381-391, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34077671

RESUMEN

Recombinant adenoviruses have broad applications for gene delivery and expression. Furthermore, the adenovirus packaging system facilitates the expression of RNA-guided CRISPR/Cas9 nuclease complexes. In this study, we developed a novel system, named AdBlue, for the construction of recombinant adenoviruses using an enzymatic assembly strategy. This system could significantly reduce the time and labor required to generate adenoviral vectors. When applied to CRISPR/Cas9 design, it simplifies the preparation of recombinant adenoviruses carrying nuclease complexes and can induce high levels of site-specific mutagenesis. Our system has outstanding advantages for adenovirus preparation and could be a useful molecular engineering tool for gene delivery and editing.


Asunto(s)
Adenoviridae/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Vectores Genéticos , Línea Celular , Endonucleasas/genética , Técnicas de Inactivación de Genes , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , ARN Guía de Kinetoplastida
8.
Aging (Albany NY) ; 13(11): 15013-15031, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031268

RESUMEN

Fat storage is one of the important strategies employed in regulating energy homeostasis. Impaired lipid storage causes metabolic disorders in both mammals and Drosophila. In this study, we report CG9911, the Drosophila homolog of ERp44 (endoplasmic reticulum protein 44) plays a role in regulating adipose tissue fat storage. Using the CRISPR/Cas9 system, we generated a CG9911 mutant line deleting 5 bp of the coding sequence. The mutant flies exhibit phenotypes of lower bodyweight, fewer lipid droplets, reduced TAG level and increased expression of lipolysis related genes. The increased lipolysis phenotype is enhanced in the presence of ER stresses and suppressed by a reduction of the ER Ca2+. Moreover, loss of CG9911 per se results in a decrease of ER Ca2+ in the fat body. Together, our results reveal a novel function of CG9911 in promoting fat storage via regulating ER Ca2+ signal in Drosophila.


Asunto(s)
Adipocitos/metabolismo , Adiposidad , Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Secuencia de Bases , Proteínas de Drosophila/genética , Estrés del Retículo Endoplásmico , Espacio Intracelular/metabolismo , Lipólisis , Proteínas de la Membrana/genética , Modelos Biológicos , Chaperonas Moleculares/genética , Mutación/genética , Fenotipo
9.
Front Microbiol ; 12: 607451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33603723

RESUMEN

Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.

10.
Virol J ; 18(1): 8, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407693

RESUMEN

BACKGROUND: The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a major antigen that can induce protective antibodies in poultry. However, its antigenic epitopes have not been fully elucidated. Therefore, defining the linear epitopes of HN, especially neutralizing epitopes, will be useful for revealing its antigenic characterization. METHODS: In this study, we analyzed B-cell immunodominant epitopes (IDEs) of the HN protein from the vaccine strain LaSota using pepscan technology with LaSota-specific chicken hyperimmune antisera. We constructed IDEs-RFP plasmids and prepared anti-IDEs peptide mouse sera to identify IDEs through immunological tests. At last, the different diluted anti-IDE antisera were used in BHK-21 cells to perform the neutralization test. RESULTS: Five IDEs of the HN were screened and further verified by indirect immunofluorescence assays, dot blots and Western blots with NDV- and IDEs-specific antisera. All five IDEs showed good immunogenicity. IDE5 (328-342 aa) could recognize only class II NDV but did not react with the class I strain. Most of the IDEs are highly conserved among the different strains. A neutralization test in vitro showed that the peptide-specific mouse antisera of IDE4 (242-256 aa) and HN341-355, a reported neutralizing linear epitope, could partially neutralize avirulent LaSota as well as virulent strains at similar levels, suggesting that IDE4 might be a potential neutralizing linear epitope. CONCLUSION: The HN protein is a major protective antigen of NDV that can induce neutralizing antibodies in animals. We identified five IDEs of the HN using a pepscan approach with NDV-specific chicken hyperimmune antisera. The five IDEs could elicit specific antibodies in mice. IDE4 (242-256 aa) was identified as a novel potential neutralizing linear epitope. These results will help elucidate the antigenic epitopes of the HN and facilitate the development of NDV vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Proteína HN/inmunología , Epítopos Inmunodominantes/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Pollos , Secuencia Conservada , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Proteína HN/química , Proteína HN/genética , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/genética , Ratones , Modelos Moleculares , Pruebas de Neutralización , Virus de la Enfermedad de Newcastle/genética , Vacunas Virales/genética , Vacunas Virales/inmunología
11.
Viral Immunol ; 32(5): 221-229, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31094659

RESUMEN

Matrix (M) protein of Newcastle disease virus (NDV) is an abundant protein that can induce a robust humoral immune response. However, its antigenic epitopes remain unknown. In this study, we used a pepscan approach to map linear B cell immunodominant epitopes (IDEs) of M protein with NDV-specific chicken antisera. The six epitopes with the highest reactivity by peptide scanning were obtained as IDE candidates. Among them, aa71-85 and aa349-363 were identified by immunological assays with NDV-specific or IDE-specific antisera. The minimal antigenic epitopes of the two IDEs were further characterized as 77MIDDKP82 and 354HTLAKYNPFK363. Moreover, an amino acid sequence alignment and immunoblot analysis revealed the conservation of the two IDEs in the M protein of strains of different genotypes. These two IDEs of M protein could be genetically eliminated as negative markers in recombinant NDV for serologically differential diagnosis in the development of marker vaccines.


Asunto(s)
Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos Inmunodominantes , Virus de la Enfermedad de Newcastle/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Pollos , Mapeo Epitopo , Genotipo , Ratones , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Virus de la Enfermedad de Newcastle/clasificación
12.
Virol J ; 14(1): 185, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28946881

RESUMEN

BACKGROUND: Newcastle disease virus (NDV) causes severe diseases in avian species. Its fusion protein cleavage site (Fcs) is a major contributor to virulence and membrane fusion. Previous studies showed that a change from phenylalanine (F) to lysine (L) at position 117 of the virulent strain fusion protein, which has the polybasic amino acid Fcs motif "112RRQKR↓F117", blocked syncytium formation. However, we observed that F proteins of the virulent strain F48E9 and avirulent strain LaSota substituted with an identical cleavage motif, "112RRQRR↓L117", induced extensive and slight syncytium formation, respectively. Accordingly, we hypothesized that the difference in syncytium formation is caused by other regions of the fusion protein. RESULTS: The exchanged regions between the fusion proteins of two strains, F48E9 and LaSota, showed that the region from amino acid 118-499 plays an important role in modulation of fusogenic activity in transfected cells. Further dissection of this region indicated that replacement of two amino acids (N479D, R486S) in heptad repeat 2 (HR2) of the avirulent fusion protein by the virulent counterpart resulted in fusion promotion. Moreover, the role of these two amino acids in fusion is dependent on the unique Fcs sequence "RRQRR↓L". CONCLUSIONS: Our results demonstrated that two amino acids (D479, S486) of the virulent strain F protein with this unique Fcs were critical for promoting fusogenic activity, and residue F or L at position 117 did not affect syncytium formation. These findings provide novel insights into fusogenic triggering by the fusion protein and may be useful for designing antiviral peptides.


Asunto(s)
Secuencias de Aminoácidos , Mutación , Virus de la Enfermedad de Newcastle/fisiología , Dominios y Motivos de Interacción de Proteínas , Proteínas Virales de Fusión/genética , Animales , Línea Celular , Cricetinae , Células Gigantes/patología , Células Gigantes/virología , Fusión de Membrana , Proteolisis , Proteínas Virales de Fusión/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...